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Chlamydomonas acidophila growing autotrophically with continuous PAR light (160 

µE.m-2.s-1) and 30 ºC may accumulate carotenoids which increase in response to abiotic 

stress, like high light intensity, UV-A radiation and temperature fluctuation. At 240 

µE.m-2.s-1 the alga contains 57.5 ± 1.6 mg.l-1 of total carotenoids after 20 days of 

growing, which does not significantly change by an irradiance of 1000 µE.m-2.s-1. 

Lutein (20 ± 0.5 mg.l-1) and β-carotene (8.3 ± 0.2 mg.l-1) production were particularly 

high in C. acidophila, while zeaxanthine (0.2 ± 0.1 mg.l-1) was low. Enhanced 

production of these carotenoids was also observed in cultures illuminated with PAR 

light (160 µE.m-2.s-1) supplemented with moderate UV-A radiation (10 µE.m-2.s-1). 

Optimum algae growth takes place at 40 ºC, like the maximum amount of intracellular 

lutein and β-carotene. On the other hand, the presence of iron in the culture medium, in 

a range between 5-35 mM, significantly decreased the cell viability and the intracellular 

content of carotenoids, however cupper, at 1-5 mM, appears to increase the synthesis of 

β-carotene. The alga can growth under mixotrophic conditions, with glucose or acetate, 

10 mM, as carbon source, but such conditions did not improved the intracellular content 

of carotenoids. 
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Introduction 

Microalgal production of high added value products, particularly carotenoids for human 

health and nutrition, are gaining relevance during the last years, but its broad industrial 

application still requires studies to improve the methods in order to be economically 

competitive in the market [1-3]. Carotenoids accumulation by microalgae depends on 

both nutritional and environmental conditions and it can be stimulated by high luminical 

intensity [1], type of light [4] or limiting nutrients, particularly P or N [5,6]. Besides to 

be secondary pigments for PAR light absorption for photosynthetic activity, carotenoids 

protect the algae against oxidative stress, generally associated to the high light and/or 

UV-A radiation [4]. Particularly interesting is lutein because its presence in the human 

eye where it protects the macula against oxidation and, in general against the age-related 

macular deseases [7]. Due to these important benefits, lutein is recommended as dietary 

supplement for humans [8]. 

Extremophiles microorganisms, like Dunaliella bardawill, are frequently 

involved in carotenoids photoproduction and they rise new possibilities of 

biotechnological applications [9,10]. Massive accumulation of β-carotene in D. salina is 

triggered by environmental stresses such as intense irradiance, high salinity, nutrient 

starvation and extreme temperatures [11,12]. Ben-Amotz, [13] found in D. bardawil 

that decreasing the culture temperature from 30ºC to 10ºC caused a four-fold increase in 

the 9-cis/all-trans β-carotene ratio (0.5 to 2.0), with no significant changes in the other 

cell pigments 

Our purpose is to study the possibilities of Chlamydomonas acidophila as 

carotene source, by changing the environmental conditions of growth. 

 

 3



70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

 

Materials and Methods 

Microorganism and culture conditions 

Chlamydomonas acidophila was isolated from water of Tinto river (Huelva, 

Spain). The natural environment of the alga was pH 2.5 and high contamination by 

heavy metals, specially iron, magnesium and aluminium, as more as sulfate and nitrate. 

The alga was cleaned in Petri dishes with agar medium, at the indicated acidic pH, and 

from the agar medium to liquid medium. Unless otherwise indicated, cultures were 

grown at 30 ºC, bubbled with air containing 5 % (v/v) CO2, as unique carbon source, 

and continuously illuminated with white fluorescent lamps (Philips TLD, 30 W, 160 

µEm-2.s-1, at the surface of the flask). Under these standard conditions the generation 

time for C. acidophila was about 60 h [14]. The growth rate was determined by 

measuring the chlorophyll content in 1 ml of culture at different times. Biomass 

production was usually determined by the dry weight contained in 300 ml of alga 

culture, at the end of each experiment. 

The irradiance was measured with a photoradiometer Delta OHM (mod. 

HD9021). 

 

Analytical determinations 

Pigments were measured spectrophotometrically using aliquots (1 ml) of the 

cultures which cells were spinned down for 10 min at 5000 rpm and the obtained pellet 

was treated with boiled water during 1 min. Then 4 ml of pure methanol was added and 

the resulted suspension shaked vigorously for 1 min and centrifuged during 10 min at 

5000 rpm. Chlorophyll and total carotenoid concentrations were determined in the 

supernatant, using the equations proposed by Wellburn [15]. 
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Carotenoids were separated and characterized by HPLC (Merck Hitachi, 

equipped with a UV-V detector) analysis as described by Young [16]. Pigments 

detection was performed at 450 nm and quantified using standards supply by DHI-

Water and Environment (Denmark). 

 

Statistic 

Unless otherwise indicated, the presented data are the means of three 

independent experiments. The standard deviations use to be lower than 3 %. 

 

Results and Discusion  

Light intensity and nutritional conditions induce carotenogenesis in 

extremophiles, as an answer to the associated oxidative stress [1]. We study the best 

conditions to improve the quantity and quality of produced carotenoids by C. 

acidophila. 

 

Effect of light on carotenoids accumulation by C. acidophila 

Cultures of C. acidophila were irradiated with PAR light of 160, 240 and 1000  

µE.m-2.s-1 and total intracellular chlorophyll and carotenoids were determined. Fig. 1 

shows that high light intensity inhibits the alga growth, while an optimal carotenoids 

accumulation of 57.5 ± 1.6 mg.l-1 was observed in the culture after 20 days of growing 

at 240 µE.m-2.s-1, which suppose 15 g/kg of dry weight. In all cases -carotene 

biosynthesis is higher than in the control, thus indicating a probably stimulation of 

enzymes involved in carotenogenesis. Similarly, light induces stimulation of the 

phytoene synthase and phytoene desaturase in Chlamydomonas reinhardtii [17]. An 

obligate photoautotroph, Spirulina platensis, was also reported to disply increased 
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carotenoid levels under strong illumination [18] and in most cases, light causes a 

quantitative improvement in carotenoid content in microorganisms [1], however, the 

microalga Phaeodactilum tricornutum was reported to show a five-fold improvement in 

cellular carotenoid content in response to a decrease in light intensity [19].  

In order to determine the type of carotenoid accumulated by C. acidophila, we 

analyze the above mencioned cultures and the obtained results are shown in Table 1. 

Lutein is present as high as 20.2 mg.l-1 which suppose 34.7 % of total carotenoids, β-

carotene (8.3 mg.l-1), violaxanthin (3.2 mg.l-1) and zeaxanthin (0.2 mg.l-1). These 

carotenoids suppose a 55.6 % of the total carotenoids fraction, as estimated by HPLC. 

These data show that C. acidophila is very adequate for the biotechnological production 

of lutein (10.13 g.kg-1 of dry weight) as compared with other microalgae previously 

studied, like Muriellopsis sp, 5.7 [20], Dunaliella salina, 5.5 [21] and Chlorococcum, 

2.0 g.kg-1 [22]. The increase in the PAR light up to 1000 µE.m-2.s-1 does not has any 

effect on lutein and/or β-carotene intracellular concentration in C. acidophila, which is 

different to other microalgae [4]. 

Carotenogenesis rate was stimulated when PAR light was supplemented with 

UV light [23], however UV radiation has been proved to have both positive or negative 

effects on the viability of the microalgal culture [24]. C. acidophila improves the 

viability when PAR light of 160 was supplemented with UV-A light of 10 µE.m-2.s-1. 

This effect paralells with the intracellular carotenoids accumulation (Fig. 2), as well as 

lutein and β-carotene (Fig. 3). UV lights higher than 10 µE.m-2.s-1 produces a significant 

inhibition of both alga growth and carotenoids accumulation (Fig. 2). UV radiation has 

been probed to have both positive and negative effect on the viability of the microalgae 

cultures [24]. Dunaliella bardawill accumulates carotenoids because the oxidative stress 

generated by UV radiation [4]. 
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Effect of temperature on C. acidophila growth and carotene accumulation 

Temperature is consider the main factor controlling growth rate in the 

commercially important microalgae Dunaliella sp. and the fresh water green alga 

Haematococcus pluvialis, and the parallel with carotene production [1]. We studied the 

viability of C. acidophila in the temperature range 25-50 ºC, and the best results either 

for growth and carotenoid production were obtained at 40 ºC (Fig. 4), while 50 ºC was 

letal for the alga. Growth-limiting conditions, such as pH value and increasing 

temperature were found to stimulate carotenogenesis in Muriellopsis sp. [25]. In 

addition temperature was found to be more effective than irradiance in changing the 

qualitative and quantitative carotenoid composition in several species of Dunaliella 

salina [26]. Production of lutein and β-carotene were also optima at 40 ºC in C. 

acidophila (Fig. 5).  

 

Effect of nutritional conditions on carotene production by C. acidophila 

The alga can be grown under mixotrophic conditions with glucose or acetate as 

carbon source, and the intracellular carotene content of alga was 13.3 and 11.2 g/kg, 

respectively, which did not improve the carotene production under phototrophic 

conditions (15 g/kg). Similar situation was observed with other potential carbon source  

for the alga, like acetate, sugars or amino acids (data not shown). 

 

Effect of heavy metals on viability and carotene production by C. acidophila 

Addition of ferric iron to the alga culture medium, between 5 – 35 mM final 

concentration, produces a strong inhibition of the algal growth and thus on the 

carotenoids production (data not shown). Haematococcus pluvialis improved 
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astaxanthin production when cultured in growth medium supplemented with ferrous ion, 

probably because the high amount of hydroxyl radical generated by the Fenton reaction 

[27]. On the other hand cupper addition up to 4 mM final concentration increases 

carotenoids production after 3 days of alga growth (Fig. 6). In this contest only cobalt, 

at low concentration was reported to stimulate carotenogenesis in the cyanobacyerium 

Spirulina platensis [1]. 
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TABLES 259 

260 

261 

Table 1 

Influence of light intensity on the carotenoids accumulation by C. acidophila 

262  

Carotenoids (mg.l-1)    PAR Intensity ( µE.m-2.s-1) 263 

264 

265 

266 

267 

268 

269 

 

     160  240  1000   

Lutein     11.0 ± 0.2 20.2 ± 0.5 15.3 ± 0.2  

-carotene    6.0 ± 0.1 8.3 ± 0.2 4.9 ± 0.1  

Violaxanthin    1.5 ± 0.01 3.2 ± 0.1 1.5 ± 0.01  

Zeaxanthin    0.1 ± 0.01 0.2 ± 0.01 0.7 ± 0.01  

270 

271 

272 

273 

274 

275 

276 

277 

 

 

Cultures growing autotrophically, under standard conditions and logarithmic phase, 

were illuminated with PAR light, at the indicated intensity. After 9 days of growing, the 

intracellular carotenoids were determined, using aliquots of the corresponding culture, 

as indicated in Methods section. Given values are mean ± S.D. from three independent 

experiments. 
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Figure captions 

 

Figure 1. HPLC analysis of carotenoids from C. acidophila extracts. Peak 

assignment is as follows: (1) violaxanthin; (2) lutein; (3) zeaxanthin; (4) chlorophyll b; 

(5) chlorophyll a; (6) -carotene. 

 

Figure 1. Influence of PAR light intensity on cells viability and carotenoids 

accumulation by C. acidophila, under different PAR light intensity. 

Standard autotrophic cultures were continuously illuminated with PAR light of 160 

(); 240 (); or 1000 () µE.m-2.s-1. At the indicated times the intracellular content of 

total carotenoids (A) and chlorophyll (B) were determined in aliquots of the 

corresponding culture. 

 

Figure 2. Influence of UV-A radiation on the cell viability and total carotenoids 

accumulation by C. acidophila.  

Standard autotrophic cultures were continuously illuminated with PAR light of 160 () 

µE.m-2.s-1, supplemented with UV-A light of 5 (□), 10 (), 25 () or 40 (X) µE.m-2.s-1. 

At the indicated times the intracellular content of total carotenoids (A) and chlorophyll 

(B) were determined in aliquots of the corresponding culture. 

 

Figure 3. Influence of UV-A radiation on lutein and β-carotene accumulation by C. 

acidophila. 

Standard autotrophic cultures were continuously illuminated with PAR light of 160 () 

µE.m-2.s-1, supplemented with UV-A light of 10 (), 25 () or 40 (X) µE.m-2.s-1. At the 
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indicated times the intracellular content of β-carotene (A) and lutein (B) were 

determined in aliquots of the corresponding culture. 

 

Figure 4. Influence of temperature on the cell viability and total carotenoids 

accumulation by C. acidophila. 

Standard autotrophic cultures, at the beginning of the logarithmic phase of growth, were 

continuously illuminated with PAR light of 160 µE.m-2.s-1, and grown at the following 

temperatures: 25º C (); 30 ºC (); 40 ºC (X) or 50º C (○). At the indicated times the 

intracellular content of total carotenoids (A) and chlorophyll (B) were determined in 

aliquots of the corresponding culture. 

 

Figure 5. Influence of temperature on lutein and β-carotene accumulation by C. 

acidophila. 

Standard autotrophic cultures, at the beginning of the logarithmic phase of growth, were 

continuously illuminated with PAR light of 160 µE.m-2.s-1, and grown at the following 

temperatures: 25º C (); 30 ºC (); 35 ºC () or 40º C (X). At the indicated times the 

intracellular content of β-carotene (A) and lutein (B) were determined in aliquots of the 

corresponding culture. 

 

Figure 6. Influence of different Cu2+ concentrations on lutein and β-carotene 

content of C. acidophila. 

Standard autotrophic cultures, at the logarithmic phase of growth, were supplemented 

with the indicated amounts of Cu2+. After 72 h of growing the intracellular content of 

lutein (□) and β-carotene () was determined by HPLC (A % of -carotene and lutein 

by ml of culture respect to standard culture content) and (B % of -carotene and lutein 
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