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Abstract 
The infection by Severe Acute Respiratory Syndrome coronavirus (SARS)-CoV2  could be inhibited  in vitro by mutations stabilizing their spike 
(S) native conformation in prefusion states, as reported by several authors. However, the possible S stabilization by binding-ligands, rather 
than by mutations, have not been computationally explored, nor it is known if that will be possible. Therefore, to first explore these 
possibilities, a binding target for predictive programs was focused to where the inhibiting mutations were described in the S coronavirus 
protein, in particular to the “spring-loaded switch-folding” (SLSF) segment of the S2 subunit, whose prefusion unfolding/refolding is required 
for viral/host membrane fusion. Similar SLSF prefusion mechanisms have been described in many other enveloped viruses.  Results of a 
double computational screening of hundred of thousands of natural compounds for binding to wild-type SLSF conformer, predicted more leads 
in the low nM range for trimers than for monomers. Further ranked by the number of bound SLSF-conformers, some of the derived top-leads 
were predicted that may deserve experimental validation. Additionally, thousands of drugs were also included into the screening, resulting in a 
few top-lead drugs predicted to bind SLSF targets in the low nM range. All these potentially interacting S-ligands, similar structures and/or 
chemically improved designs, could be used to experimentally find out whether it will be possible to use them for inhibiting fusion and 
infection, offer new tools to investigate prefusion mechanism(s) and may contribute to therapeutic purposes.  
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Introduction 
The surface of infectious SARS-CoV-2, is surrounded by spike (S)  

glycoprotein trimers forming a corona-like structure. Most of the S trimers are in a 
host-receptor non-accessible closed prefusion conformation, having their 3 
receptor-binding domains (RBD) all-down 1. Nevertheless, S trimers often displays 
RBD epitopes targeted by many neutralizing antibodies 2-7, most probably because 
there may exist RBD spontaneous transitions from closed (down) to exposed (up) 
receptor-accessible  conformations (1, 2 or 3-up)  8. Upon binding to the host 
protein receptor, proteolysis separate the S1/S2 subunits, which become non-
covalently associated in another prefusion state (Figure 1). In SARS-CoV-2, the 
S2 subunit (residues 686-1273) contains the fusion peptide (788–806), the amino-
terminal HR1 (910 to 988, with non-helix residues at 939-947 and 968-986), the 
central helix CH (986-1033), the C-terminal HR2 (1162 to 1213), the 
transmembrane domain (1214–1237) and the cytoplasmic domain (1238–1273) 
(Figure 1). All these domains participate in several prefusion conformational 
changes to expose RBDs and trigger viral-host membrane fusion 9, 10. 

Infectious coronaviruses can be inactivated by stabilizing their S 
prefusion all-down conformations by diverse mutations 10-13. For instance, 
mutations to prolines (P) in the HR1-CH segment, generated prefusion-stabilized  
non-infectious MERS 10 and SARS-CoV2  11-13. The inhibition of infectivity by 
double PP mutations is most likely due to the blocking of the “spring-loaded 
switch” (SLS) unfolding, required for fusion-competent conformations, similarly to 
those present in many enveloped virions. In wild-type virions, after RBC binding to 
host receptors, the SLS segment unfolding prepare fusion-competent virions. 
Although the PP mutants maintained the virion morphology, they were non-
infectious. The PP-based strategy may be  advantageous for the development of 
vaccines than other described mutations, since it also increased recombinant S 
yield and stability. Those two reasons may explain why most of the presently 
available 3D S structures were solved with PP mutants (Table S1).  

The HR1-CH sequence (residues 910-1033) of SARS-COV-2  
contains the SLS 10, 14 which maintain  2 α-helices folded but separated by non-
helix residues (spring-loaded). Once the SLS folding (SLSF) is unfolded, refolding 
generates a unique longer α-helix (2 α-helices to 1 α-helix transition) (Figure 1C). 
Then trimer HR1-HR2 complexes form a fusion-competent 6-helix core of coiled-
coils (one antiparallel complex of 3 internal HR2 + 3 external HR1). A S2’ 
protease-mediated cleavage liberates the fusion peptide that now can be inserted 
into the host-cell membrane for viral/host membrane fusion.  

Previous successful examples on fusion inhibition by targeting HRs 
have been reported in several enveloped viruses, including SARS-COV-2 15, 16. 
Perhaps the best example is Enfurtivide®, an FDA-approved peptide drug 
blocking HIV infection by inhibiting HR conformational changes in its gp41 
membrane protein. In  coronaviruses, peptide inhibitors derived from HR2 and 
binding to HR1 inhibited viral fusion and infectivity.  For instance, in SARS-CoV2, 
the CP-1 peptide showed an inhibition concentration of 19 µM in cell-fusion 

assays, which could be improved to 0.19 - 0.62 µM by mutations, conjugation to 
lipids 9, 17 or hydrocarbon-chain stapling 18.  

All the above mentioned reports suggests that computationally 
searching for more potent binding ligands (i.e., in the low nM range) could be a 
source of possible prefusion inhibitors of SARS-COV-2. Perhaps targeting the 
SLSF segment rather than the HR complex core would provide some alternatives. 
Such possibilities may benefit from preliminary computational predictions. 

While most anti-coronavirus compounds are being computationally 
searched among approved drugs targeting the RNA replication complex RdRp 
core (nsp12), the S1 interface of the RBD / ACE2 host-receptor 19 and/or the viral 
proteases implicated in viral protein processing 20-22, to our knowledge,  there have 
been no previous reports on computational attempts to search for possible binding 
ligands targeting SLSFs.Therefore, based on the successful S prefusion 
stabilization of SARS-CoV2 by mutants on the SLSF segment 11-13, the existence 
of putative binding-ligands in the low nM range rather than mutations were 
explored here.  Such hypothetical ligands should be capable of stabilizing SLSF 
prefusion conformations, perhaps by non-covalent crosslinking of α-helices or by 
avoiding their displacement.  Whether such ligands binding SLSFs would exist 
and be capable of inhibiting viral fusion remains to be demonstrated.  

The results obtained predicted that, i) top-leads exist  predicted to 
bind SLSF in the low nM range, including some known drugs, and ii) The SLSF 
trimers were the best targets for such binding-ligands rather than monomers.  All 
these potential SLSF-ligands, similar structures and/or chemically altered designs, 
may be used to experimentally find out whether it will be possible to use them for 
inhibiting fusion and infection, offer new tools to further investigate the prefusion 
mechanism(s) of coronaviruses and may contribute to therapeutic purposes.  
  

Materials and Methods 
Ligands and tridimensional spring-loaded switch-folding (SLSF) models 

To simplify high-throughput screening and facilitate any subsequent 
practical use of leads, random natural products  >380 Daltons and logP>6 were 
excluded from the initial library.  Accordingly, one spatial data file (SNII.sdf) of 
325319 compounds from the SuperNatural II (http://bioinf-
applied.charite.de/supernatural_new/index.php), was downsized with the 
DataWarrior program (Osiris DataWarrior vs5.2.1) to 135831 ligands (41.7%). The 
list was then splitted in subfiles containing ~ 9000 ligands each (16-177, 177-210, 
210-231, 231-248, 248-264, 264-280, 280-295, 295-310, 310-320, 320-330, 330-
340, 340-350, 350-360, 360-370, 370-380 Daltons).   

The S residues expanding amino acids 960 to 1100 were selected as 
the hypothetical minimal spring-loaded switch-folding (SLSF) segment. To explore 
possible SLSF conformers, 40 S.pdb structures were downloaded from the RCSB 
PDB protein data bank (https://www.rcsb.org/) before September of 2020 (Table 
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S1).  The individual 3D 960-1010.pdb files were extracted from the S.pdb files 
using PyMOL scripts. Structural similarities were then estimated in Å calculated by 
Root Mean Square Differences (RMSD) of the alpha carbons by superposing the 
corresponding 3D models in the CCP4 Molecular Graphics program vs2.10.11 
(http://www.ccp4.ac.uk/MG). Binding pockets were predicted using the seeSAR 
vs.10 program (https://www.biosolveit.de/SeeSAR/) (Figure S1).  

For high throughput screening, SLSF-trimeric (virion target) and -
monomeric (infection target) were used from the 6xr8 conformer (closed all-down 
conformer) as model. After screening, leads were defined by taking into account 
the changes in the score profiles (scores values ranked by their relative order 
among each of the scored compounds) and selecting a minimal of ~1000-3000  or 
~1-2 % of the initial downsized library.   
 
SeeSAR virtual screening 

 A high-throughput screening of sdf files with a total of 135831 ligands 
to the 6xr8 conformer and of the resulting leads to 10 SLSF conformers were 
screened for binding using the BioSolveit seeSAR vs.10 package 
(https://www.biosolveit.de/SeeSAR/) in e7 desk computers, as previously 
described 23. The seeSAR package employs the HYDE scoring function to 
evaluate HYdration / DEsolvation eliminating unfavorable interactions to reduce 
false positives 24-26. To perform the dockings, 2 predicted binding-pockets (Figure 
S1, colored shadows) were used for monomers while only internal binding-pockets 
were used for trimers (Figure S1, yellow shadows). To compute the binding-scores 
and corresponding poses of each of the *.sdf files of <9000 ligands, took ~ 2 days. 
The program was set to obtain 3-5 binding poses per ligand. For each ligand, the 
poses with the lower binding-scores were selected for further analysis. The mean 
nM scores derived from the seeSAR predicted lower / higher boundaries were 
used for calculations. The predicted structures were visualized in seeSAR and/or 
PyMOL (https://www.pymol.org/). 
 
AutoDockVina virtual screening 

The AutoDockVina program 27 included into the PyRx 0.9.8  package 
28 was used to predict Gibbs free-energy (ΔG) as previously described  23, 29. 
AutoDockVina algorithm relies on ligand protonation and charge distribution to 
predict scores 27. Briefly, the  *.sdf files were ffu energy minimized in Open Bable 
and converted to *.pdbqt files for docking.   Further simplifications included setting 
the SLSF segment as rigid (constant covalent lengths and angles) and the ligands 
as flexible (rotatable bonds) and retaining the poses with the lowest ΔG of each 
*.out.pdbqt for calculations and visualization. A high-throughput screening of sdf 
files with a total of 135831 ligands to the 6xr8 conformer and of the resulting leads 
with 10 SLSF conformers were screened for binding. To perform the dockings, 
internal grids to the corresponding molecules were submitted to the program 
(Figure S1, drawn grids).The output ΔG energies in kcal/mol were converted to 
constant inhibition (Ki) values in molar concentrations (M), using the formula Ki = 
exp([ΔG × 1000] / [R × T]) (R = 1.98 cal/mol, and T = 298 ºC)30. The predicted 
structures were visualized in PyRx and/or PyMOL.  

 
Heat maps, in silico analysis of drug-like properties, commercial availability 
and known drugs  

 Top-leads were quantitatively defined by those leads with <50 nM 
binding-scores which were bound by >4 conformers (voting procedure). To 
compare leads to select  their top-leads, all the conformers and their binding 
scores were first ordered by ligand name, to obtain lists with one row per ligand / 
score. The resulting list was then ordered by the 6xr8 binding scores to select 
those showing binding-scores <50 nM. Top-leads were finally obtained by ordering 
the first 20-30 leads by those bound to >4 conformers. Conformer bindings  
defined as positive by using thresholds that resulted in  < 35 conformers were 10 
µM (seeSAR) or 250 nM (AutoDockVina). Final data were represented as heat 
maps to facilitate their interpretation.  

The water solubility, partition coefficient between n-octanol/water 
(logP), violations of Lipinski’s rules, physiological absorption predictions, 
detoxification by main cytochromes CYP1A2 and CYP3A4 and some other ADME 
properties were downloaded from the SwissADME web server for the top-leads 
provided in their SMILES format (http://www.swissadme.ch/).  Commercial 
availability were searched on the ZINC data base for the top-leads provided in 
their SMILES format  (http://zinc15.docking.org/). FDA-approved 
(https://www.accessdata.fda.gov/scripts/cder/daf/) and NCGC Pharmaceutical 

Collection (http://tripod.nih.gov/npc/) 31 drugs were retrieved from several different 
sources, and the duplicates eliminated using OpenBabel 
(http://openbabel.org/wiki/Windows_GUI, vs 3.3.1).  

 
  

 
 
 
 
 

Figure 1. Location of the spring-loaded switch-folding (SLSF) segment of the S spike protein 
A) Spike subunits S1 and S2.  Blue triangle) Location of the spring-loaded switch-folding (SLSF) 960-1010 
segment. B) Position of the exposed SLSF in the trimer. B1) The white spot visualizes the exposed residues 
983-985 (983RLD) at the tip of SLSF. B2) The SLSF labeled in red in the down S2 (labeled in green) becomes 
more accessible after removing S1 (labeled in green). The amino and carboxyl terminus of the SLSF segment  
were labeled as red spheres. B3) The residues 986/987 (green spheres) mutated to prolines for stabilization, 
map between the HR1- CH sequences (S2 subunit in red). B4) SLSF longer α-helix in the postfusion state. 
B5) The white spot visualizes the exposed residues 960-968 (960NTLVKQLSS) of the SLSF segment amino 
terminus. Hatched blue horyzontal line, location of the tip KV986PP of the SLSF segment. C) Detail of the 
unfolding-folding helix transition at the tip of SLSF segment (amino-terminal in blue and  carboxy-terminal in 
red). The two mutated prolines labeled in the middle of the SLSF segment .  

Results 
Definition of the minimal spike S amino acid segment for computational 
targeting the spring-loaded (SL) switch-folding (SF)    

To computationally study the hypothetical binding of ligands to the 
HR1-CH spring-loaded switch-folding (SLSF) segment with molecules of small 
molecular size, a preliminary exploration of the HR1-CH was undertaken to locate 
a minimal target sequence. For that, the 3D structure of the 6xr8 (RCSB ID) 
conformer, of a wild-type amino acid sequence of a prefusion all RBD-down 
conformation 32 was used. The 6xr8 conformer was chosen because it may best 
represent the native virion sequence and structure (Table S1) and therefore may 
also be one of the best targets for preventive and therapeutic purposes.  

The sequence size  was expanded around the 2 α-helices around the 
...986KV... tip  were the inactivating PP mutations were inserted in other conformers 
10, using growing grid sizes from a minimal of 9 x 9 x 9 Å centered around that tip. 
Results concluded that a minimal amino acid segment expanding residues 960-
1010,  contained most of the significant binding-scores by seeSAR and/or 
AutoDockVina (Figure 1, B2, B3, C). Additional extensions along any of the 2 α-
helices did not discovered any more shorter distances between the 2 α-helices (to 
be simultaneously bound by short ligands) and/or did not predicted any other 
binding-pockets (data not shown). Therefore, residues 960-1010 were selected to 
define the SLSF target for these studies. 

Visual inspection predicted that the SLSF segment should be partially 
accessible through two “windows” visualized when rotating the S trimer compact 
structure model (Figure 1B, B1 and B5 white spots). The surface-exposed amino 
acid residues were ~ 983-985  near the tip (983RLD) and ~ 960-968 
(960NTLVKQLSS) near the amino end of the SLSF segment. 

 
Number of leads resulting from the high-troughput screening of natural 
products against the trimer and monomer 6xr8 conformer  

High-troughput screening of 135831 random natural compounds to the 
trimer and monomer 6xr8 conformer were performed in parallel by seeSAR and 
AutoDockVina.  

SeeSAR screening of trimer 6xr8 identified 2948 leads with binding-
scores < 200 nM, while that of monomers identified 3045 leads with scores < 10000 
nM (Figure S2). The corresponding relative frequency profiles showed that a 
majority of leads were concentrated in the lowest scores corresponding to peaks at  
~ 50 nM in trimers and ~2500 nM in monomers. AutoDockVina screening of trimer 
6xr8  identified 1864 leads with binding-scores < 50 nM while monomers identified 
1168 leads with  scores < 1350 nM (not shown). 

Next, to reduce the number of SLSF conformers to facilitate analysis, 
40 available SLSF 3D monomer structures were first compared to select 10 
representatives. The selected 10 SLSF conformers and the leads predicted as 
described above were docked by seeSAR and AutoDockVina for top-leads.  
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Selection of SLSF conformers 

Monomer SLSF conformer 3D structures were extracted from the S 
trimer solved structures available in their pdb files (Table S1).  

Structural superposition, showed that most of the SLSF in prefusion  
(open, intermediate and close states), were similarly folded when compared to the 
6xr8 conformer, as suggested by RMSDs < 0.6 Å. Similar conformations were 
observed among several other SLSF structures 11, 33, 34, despite having neutralizing 
antibodies bound to the S trimers 2, 4-6, or after further mutating to P 11, 12. In 
contrast, RMSD between 0.6 to 2.90 Å were obtained for recent dominant mutants 
35, 36, after binding some antibodies 7, after the pH was lowered 37, or after S1-S2 
cleavage 38. Therefore, assuming that similar RMSD in the same amino acid 
sequences would not significatively change binding-scores, conformers with 
RMSD < 0.5 Å were excluded from further analysis. Additionally, no superpositions 
were predicted for postfusion conformers 8, 32 (Table S1).  

The 9 prefusion and 1 postfusion conformers described in Table S1 
were then selected as representative of different SLSF 3D structures.  The 
following conformers were selected, those from prefusion-close all-down (6xlu, 
6xm5, 6xey), and prefusion-open or partially open (6vyb, 6xs6, 6zgh, 6zgg, 6xm4) 
states (Table S1, yellow background and bold lettering). The wild-type 986KV 
sequence was present in the 6xr8 prefusion and 6xra postfusion, while the rest 
contained the 986PP mutations. The rest of the amino acid sequences were the 
same for all conformers (not shown).  
 
Table 1. Top-leads of the seeSAR 6xr8 trimer-leads bound by trimer-conformers   

SeeSAR 2948 trimer-leads <50 nM, ranked by the total bound number of conformers with  < 10 µM.   Red 
heading, closed-conformers. Blue heading, open-conformers.  Dark green, 6xr8 and conformer leads with 
binding-scores < 50 nM. Ligh green, conformer with binding-scores < 10 µM. Total, number of conformers 
(vertical) and percentage of top-leads bound by each conformer (down and horyzontal).The data for the 6xra 
postfusion conformer were not represented.  Yellow-background, Top-leads common to Table 1 and 2. 

 

Figure 2. 2D graphic representation of top-leads of Table 1. Top-leads of Table 1. Cluster chemotypes 
showing none (A), 1 (B) or 2-3 rings (C). Blue numbers, number of trimer-conformers bound.  Yellow-
background, Top-leads common to trimers (Table 1) and monomers (Table 2). Red stars*, commercially 
available. 
 
 

Figure 3. 3D graphic representation of the best pose of the 6xr8 +SN00333487 complex. Most of the top-
leads and conformers (Figure 2, Table 1)  showed similar best poses to those of SN00333487 and 6xr8 (A 
and B green lines), as drawn in PyMOL. A, top view. B, side view with the SLSF tip up and their amino and 
carboxyl ends down. Gray drawings, SLSF trimer structures. 
 
6xr8 leads docked to trimer- and monomer-conformers 

The trimer- and monomer-6xr8 leads were docked by seeSAR (Figure 
S3, A,B,C,D) and by AutoDockVina (Figure S3, E,F,G,H) to the selected trimer 
and monomer SLSF-conformers to first compare their binding-score profiles.  

The seeSAR trimer-leads, were more numerous and lower after 
docking to trimers (lowest 6xr8 red profile: ~1 nM; Figure S3,A) than to monomers 
(lowest 6xr8 red profile: ~500 nM; Figure S3, B). Similarly, the seeSAR monomer-
leads were more numerous and lower with trimers (lowest 6xr8 red profile: ~1 nM; 
Figure S3,C) than with monomers (lowest 6xr8 red profile: either with no-binding 
or ~10 nM; Figure S3, D). Profile variations among conformers were wide in both 
trimers and monomers (Figure S3, AB and CD, respectively).   

The AutoDockVina trimer-leads, were also more numerous and lower 
after docking to trimers (~5 nM; Figure S3,E) than to monomers (~1000 nM; 
Figure S3, F).  Similarly, the AutoDockVina monomer-leads were more numerous 
and lower with trimers  (~100 nM; Figure S3,G) than with monomers (~2000 nM; 
Figure S3, H). All these profile variations were small in trimers and monomers 
(Figure S3, EF and GH, respectively), in contrast to seeSAR’s data.  

 Top-leads were defined as leads with <50 nM binding-scores to the 
6xr8 conformer and bound by >4 conformers. Assuming that the lower trimer 
binding-scores, may be the best predictors for experimental targets, top-leads 
were identified from seeSAR trimer, seeSAR monomer and AutoDockVina trimer 
when docked to trimer-conformers (Figure S3, ACE, respectively). 

 
Top-leads of  seeSAR 6xr8 trimer-leads docked to trimer-conformers 

Top-leads selected among the seeSAR 2948 6xr8 trimer-leads were 
31 (Table 1, dark green column). Two top-leads (NS00236117, NS00333487) 
were bound by 9  and three were bound by 7 conformers.  

There was an inverse correlation between the RMSD conformer values 
relative to 6xr8 and their number of top-leads bound (for instance, 6xey with 2.9 Å 
and 35.4 % of top-leads bound, 6xm4 with 1.31 Å and 6.4% of top-leads bound, 
6zgg with 0.86 Å and 16.1 % of top-leads bound). Additionally, the 6xra conformer 
with no predicted RMSD, showed only 3.2 % of top-leads bound (not shown). 
Similarly, more close- (Table 1, red headings) than open- (Table 1, blue 
headings) conformers bound top-leads.    

The seeSAR trimer top-lead chemotypes could be clustered in 3 
chemotypes: no rings (A, 41.9%), one ring (B, 32.2%) or 2-3 rings (C, 25.8%) 
(Figure 2).   

Visual inspection of the top-leads complexed with trimer-SLSFs 
predicted similar interactions with their amino acid neighbors. In the 6xr8 trimer, 
for example, the neighbors to SN00333487 mapped to the trimer inner part inside 
the structure binding to each of its 3 monomers (Figure 3, top view) in the middle 
of the SLSF segment (Figure 3, side view). 
 

Top-leads of seeSAR 6xr8 monomer-leads docked to trimer-conformers 
Top-leads selected among the seeSAR 3045 6xr8 monomer-leads 

were 21 (Table 1, dark green column). Four top-leads (SN00333487, 
SN00030711, SN00241472, SN00073534) were also among the seeSAR trimer 
top-leads (Tables 1, 2 and Figures 2, 4, yellow-backgrounds).  

There was also an inverse correlation between the higher conformer 
RMSD values and their lower number of top-leads bound and more close- than 
open-conformers bound top-leads. The seeSAR monomer top-lead chemotypes 
were similar to the seeSAR trimer top-leads (Figure 4). 

The seeSAR monomer top-leads mapped also to the inner part of 
their corresponding trimers. SeeSAR monomer top-leads with predicted binding 
into the middle of the trimer were very rare and with higher binding-scores (data 
not shown). 
 

Top-Leads 6xr8 6xlu 6xm5 6xey 6vyb 6xs6 6zgh 6zgg 6xm4 Total 

SN00236117 11.3          9 
SN00333487 46.3          9 
SN00030711 1.0           7 
SN00241472 2.3           7 
SN00339301 13.4           7 
SN00360448 4.3           6 
SN00379984 31.3           6 
SN00350832 34.5           6 
SN00316933 40.6           6 
SN00359351 5.3           5 
SN00037008 24.8           5 
SN00395077 33.7           5 
SN00363785 2.2           4 
SN00272769 2.6           4 
SN00236633 3.4           4 
SN00072922 8.2           4 
SN00071475 10.2           4 
SN00316223 12.2           4 
SN00031000 14.6           4 
SN00334251 15.7           4 
SN00330379 18.1           4 
SN00020460 32.7           4 
SN00306080 37.4           4 
SN00327581 37.7           4 
SN00073534 39.9           4 
SN00024546 42.7           4 
SN00072921 44.8           4 
SN00030713 45.5           4 
SN00334033 46.6           4 
SN00071389 47.1           4 
SN00317046 49.8           4 
Total,% 100 77.4 70.9 35.4 77.4 67.7 41.9 16.1 6.4  
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Table 2.  Top-leads of the seeSAR 6xr8 monomer-leads bound by trimer-conformers   

Top-Leads 6xr8 6xlu 6xm5 6xey 5byv 6xs6 6zgh 6zgg 6xm4 Total 
SN00249430 5.6                 8 
SN00241472 7.7                 8 
SN00400153 17.0                 8 
SN00278612 28.6                 8 
SN00359607 3.2             ##### ##### 7 
SN00300994 4.7               ##### 7 
SN00282570 7.0                 7 
SN00254120 19.3                 7 
SN00335571 24.3                 7 
SN00316933 32.0                 7 
SN00307456 42.8                 7 
SN00030711 1.0           ####   ##### 6 
SN00272486 4.4             ##### ##### 6 
SN00333487 14.8                 6 
SN00312704 26.9                 6 
SN00362440 43.5                 6 
SN00356917 3.2           #### ##### ##### 5 
SN00334964 25.3                 4 
SN00073534 39.9                 4 
SN00046678 47.8                 4 
SN00400131 49.7                 4 
Total, % 100 80.9 80.9 52.3 100 80.9 57.1 28.5 33.3  

seeSAR 3045 monomer-leads <50nM, ranked by the total bound number of conformers with  < 10µM. Other 
details as in Table 1. 

Figure 4. 2D graphic representation of top-leads of Table 2. Top-leads of Table 2. Cluster chemotypes 
showing none (A), 1 (B) or 2-3 rings (C). Other details as in Figure 2. 
 

Top-leads of AutoDockVina 6xr8 trimer-leads docked to trimer-conformers 
Top-leads selected among the 1864 AutoDockVina 6xr8 trimer-leads 

were 33 (Table 3, dark green column). There were no top-leads common to 
those predicted by seeSAR trimers and monomers (Table 1 and 2). There was 
also an inverse correlation between the RMSD and lower number of top-leads 
bound and more close- than open- conformers bound top-leads.     

In contrast to seeSAR trimers and monomers, the AutoDockVina trimer 
top-leads could be clustered in, 4 different chemotypes: 2 (II, 18.1 %), 3 (III, 42.4 
%), 4 (IV, 24.2 %) or 5 (V, 15.1 %) rings (Figure 5).  

Visual inspection of the top-leads complexed with trimers predicted 
similar interactions with their amino acid neighbors and similar to the seeSAR top-
leads. Thus, in the 6xr8 trimer, for example, the neighbors to top-leads bound by 
at least 5 conformers mapped into the inner part inside the trimer (Figure 6, A) and 
in the middle of the SLSF segment (Figure 6, B). 
 

In silico analysis of drug-like properties of top-leads  
  The corresponding  in silico pharmacokinetic parameters, 
physicochemical and toxicity ADME predicted properties of the top-leads from 
Tables 1, 2 and 3,  showed that they have good characteristics for drug 
development since most of them were soluble, complied with Lipinski rules and 
have enough gastrointestinal permeability predictions (Table S2).  As expected by 
the higher number of carbon rings, the top-leads predicted by AutoDockVina 
(Table 3) were more bulky, worse for gastrointestinal absorption and have more 
chemical parts known to be toxic or unstable (Brenk alerts) when compared to 
those predicted by seeSAR (Tables 1 and 2). However, some of the top-leads 
were predicted to be inhibitors of the most important detoxifying cytochromes 
P450 (CYP1A2 and CYP3A4), which may raise some physiological problems for 
drug-like purposes.   
 
Predicted SLSF binding to known drugs 
 To explore whether there exist any other SLSF-binding compounds 
among those already FDA-approved or listed as NCGC-pharmaceutical drugs, a 
maximal number of those were retrieved from different sources. Similar docking 
screenings to the natural compound library were applied to these libraries but 
restricted to 6xr8 trimer targets. The 1700 FDA-approved and 7879 NCGC drugs 
screened by seeSAR predicted only 7 and 22 < 50 nM leads, respectively. Those 
leads were docked to the rest of trimer-conformers to predict their corresponding 
top-leads. As expected the profiles of their binding-scores were lower for the 6xr8 
conformer and similar to the other profiles obtained with natural products, however 
their number of leads were ~100-fold lower (Figure S4). 
 

Table 3. Top-leads of the AutoDockVina 6xr8 trimer-leads bound by trimer-conformers 
Top-Leads 6xr8 6xlu 6xm5 6xey 6vyb 6xs6 6zgh 6zgg 6xm4 Total 
SN00171986 6.1                 6 
SN00237200 10.1                 6 
SN00139699 11.9                 6 
SN00279624 19.8                 6 
SN00052785 23.5                 6 
SN00025089 46.1                 6 
SN00064143 8.5                 5 
SN00001854 11.9                 5 
SN00147258 14.1                 5 
SN00023927 16.7                 5 
SN00022518 23.5                 5 
SN00118894 23.5                 5 
SN00123877 23.5                 5 
SN00161487 23.5                 5 
SN00126519 32.9                 5 
SN00002685 39.0                 5 
SN00120545 39.0                 5 
SN00236177 7.2                 4 
SN00261691 14.1                 4 
SN00234593 16.7                 4 
SN00133277 16.7                 4 
SN00262902 19.8                 4 
SN00121318 32.9                 4 
SN00031647 32.9                 4 
SN00131462 32.9                 4 
SN00263240 39.0                 4 
SN00005569 39.0                 4 
SN00031715 39.0                 4 
SN00031719 39.0                 4 
SN00132791 39.0                 4 
SN00139629 46.1                 4 
SN00014964 46.1                 4 
SN00164272 46.1                 4 
Total, % 100 33.3 63.6 84.8 27.2 39.3 69.6 18.1 21.2  

AutoDockVina 1864 trimer-leads <50 nM ranked by the total bound number of conformers with  < 250 nM.   
Other details as in Table 1. 

Figure 5 . 2D graphic representation of top-leads of Table 3 . Top-leads of Table 3. Cluster chemotypes 
showing 2 (II), 3(III), 4 (IV) or 5(V) rings. Other details as in Figure 2. 

 

 
Figure 6. 3D graphic representation of superposed best poses of the 6xr8  top-leads. Superposed 
drawings of top-leads bound by >5 conformers (Figure 5, Table 3). Other details as in Figure 3. 
 

 There were 7 drug top-leads that bound more than 4 conformers 
(Table 4), 2 corresponded to FDA-approved drugs and 5 to NCGC drugs (Figure 7). 
Most of the drug chemotypes predicted to bind at the low nM range to trimer SLSF 
have 2-fold symmetries except Tinosorb-s which has 3-fold symmetry and have 
the lowest predicted score for binding to the 6xr8 conformer. The unique 3-fold 
symmetry structure of Tinosorb s, suggests their fitting to the trimeric inner part of 
the SLSFs. To note that these drug chemotypes were of higher molecular weights 
(i.e., 627 Daltons of Tinosorb-s) than any of the natural compounds  newly 
described above (<380 Daltons) and therefore showed lower binding scores when 
compared to some of the natural compounds.   
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Visual inspection of 3D models of the best poses of top-leads 

complexed with trimer-SLSFs predicted similar interactions with their amino acid 
neighbors. Thus, the  amino acid neighbors in the 6xr8 trimer of Tinosorb-s (the 
lowest predicted binding-score to 6xr8), for example, mapped into the inner part 
inside the trimer, hypothetically interacting with each of the 3 monomers (Figure 8, 
A) and in the middle of the SLSF (Figure 8, B). The Tinosorb-s bound to 6xr8 
SLSF also confirms its location within the trimer suggested by its 3-fold symmetry. 
The models were very similar to the best poses of most of the top-leads from the 
natural compounds described above.  
 
Table 4. Drug top-leads of trimer-seeSAR bound to trimer-conformers 

The Table shows the 27 seeSAR 6xr8 leads <50nM, ranked by the total bound number of conformers with  < 
10 µM, obtained from FDA-approved and NCP libraries. One of two independent dockings with similar results 
were represented. Names in blue, FDA-approved drugs. Names in bold, NCGC drugs. Other details as in 
Table 1. 

Figure 7 . 2D graphic representation of drug top-leads of Table 4 . Names in blue corresponded to FDA-
approved drugs while the rest were from NCGC drugs. Other details as in Figure 2. 

 

 
Figure 8. 3D graphic representation of the complex of the 6xr8 SLSF and the best pose of Tinosorb-s. 

Representative drawing of top-leads and conformers (Figure 7, Table 4). Other details as in Figure 3. 
 
 
 
 
 

Discussion 
  After exploring the trimer and monomer conformations of SLSF (S 
residues 960-1010) of SARS-CoV2 by computational ligand screening, dozens of 
leads and top-leads were predicted to bind in the low nM range to a high number 
of conformers from thousands of natural compounds with <380 Dalton and < 6 
logP. Surprisingly, leads and top-leads identified here were targeted to SLSF 
residues far from their tips, where PP mutations affecting fusion and infectivity had 
been previously located. Nevertheless, the predicted top-leads may be used to 
experimentally find out whether it will be possible to inhibiting fusion and infection. 

The SLSF segment was chosen as a computational target for ligands 
because it had not been explored before with such purpose. The SLSF segment 
contains an spring-loaded switch folding that when unfolded-refolded converts two 
α-helices to a larger α-helix required for fusion. The double screening (seeSAR 
and AutoDockVina) approach used here consisted in a combination of high-
throughput screening of a native trimer and monomer SLSF conformer to predict 

leads, followed by docking to several SLSF conformers. After estimating that the 
variations in conformation which may had been introduced by using PP mutants 
did not cause conformational changes at the SLSF segment (low RMSD values), 
top-leads were defined by taking into account the number of conformers bound 
(vote approach).  Rather than relying solely in lead binding-scores, these 
additional criteria was expecting to increase their chances to predict experimental 
success. This conformer approach may also be looked as a simplified alternative 
to molecular dynamic procedures, which although will best mimic some of the 
experimental situations, it uses prohibitive computational costs for screening a 
large number of ligands. Additionally, two different docking algorithms were used 
because of previously reported experimental failures, due to limitations of actual 
molecular scoring programs 39-41.  Nevertheless, because of the absence of 
experimental data to evaluate the relative physiological importance of each 
conformer, it should be recognized that all these assumptions are only some 
among many other possibilities.  An example of the above considerations, is the 
lack of coincidence among the top-lead chemotypes predicted by seeSAR and 
AutoDockVina. These data not only may reflect the different algorithms these 
programs use but also the molecular diversity of possible solutions to find 
compounds which bind the inner part of the SLSF segment.  

One of the challenges for experimental prediction is how accessible is 
the SLSF segment in the native infectious viral particle. The partial accessibility of 
SLSF predicted by modeling the native closed all-down S trimers, suggests that 
SLSF may be reached even when inside the trimeric highly compacted prefusion 
S conformations. Theoretically, experimental binding could be possible for some of 
the top-leads with the highest affinities and small and elongated-structures.  
Furthermore, the presence of partially open S structures in some prefusion states 
described by several authors, suggests that the S1-S2 interactions may be under 
spontaneous continuous displacements, thus theoretically increasing the 
accessibility to SLSF. Therefore, possibilities may be high for high-affinity and 
small ligands to get access to bind SLSF at the prefusion states. However, 
experimental binding and whether binding top-leads would inhibit fusion, remains 
to be investigated. In this respect, experimental difficulties may also arise by top-
leads in the low nM binding-score (high affinity) range. Since to stabilize the S 
prefusion state any of the studied drugs must predict strong ligand affinities to 
SLSF to lock the spring-loaded mechanism, such high affinities may also 
recognize similar combinations of amino acids in other proteins, generating 
unexpected undesirable side-effects. 

No top-leads could be found for the post-fusion state, making the top-
lead binding possibilities less likely once SLSF reaches that conformation. 
Although, there is a requirement for a trimer-dependent inner binding-pocket for 
the 6xr8-dependent top-lead bindings, alternatively, it would be possible to high-
throughput screen for postfusion targets using the 6xra rather than the 6xr8 
conformer in future work. Similarly, other possibilities may also be explored such 
as targeting the surface of the SLSF or the binding interfaces with other S 
domains or using other SLSF conformers for the initial high-throughput screening. 

The conformer-dependent wide variation in binding-scores, despite 
having the same amino acid sequences and similar 3D solved structures (low 
RMSDs), was remarkable. At this respect, the conservation of S amino acid 
sequences among SARS-CoV2 isolates is high since only 9 amino acid 
substitutions, most of them conservative, were found among 61 SARS-CoV2  S 
sequences (Global Initiative on Sharing All Influenza Data database, 
https://www.gisaid.org/) 1. Therefore, most of the observed binding-score 
differences among SLSF conformers are most probably due to small differences 
on 3D structures. Among those sequence variations, the D614G mutation that has 
become dominant as the pandemic proceeds, has been implicated in increasing 
the spread of the virus by favoring S up-conformations and by changing tissue 
tropisms 35, 36. The SLSF corresponding to the D614G mutation caused an 0.6  Å  
RMSD change, however  67.7 % of the top-leads still were predicted to bind to it, 
therefore minimizing possible scapes of the mutant to those top-leads. 

A few FDA and NCPG drugs were also predicted to bind SLSF in the 
low nM range. Although all those drugs were of higher molecular weights than 
those investigated in this work, they may also deserve further experimental 
investigations. For instance, Tinosorb-s, a compound used to prevent damage in 
the skin by ultraviolet light, could be a candidate to stabilize prefusion 
conformations, however, because of their physiological properties, it may be only 
suitable to disinfect surfaces rather than for therapeutic purposes. 

Among many other possibilities, the lists of leads/top-leads and not-
binding ligands identified here may be used as several choices for training sets 
for deep learning approaches. Deep learning approaches may serve to screen 
larger libraries of millions of compounds based solely on their chemical attributes 
rather than on the labor-intensive docking. Such approaches may be used as 
alternatives for a first step of the first high-throughput computer-intensive 
screening looking for downsized leads, thus leaving the more traditional docking 
to predict top-leads for experimental validation. Finally, in vitro assays testing 
binding to recombinant S, inhibition of fusion and possible blocking of in vitro 
coronavirus cellular infection, could be employed to experimentally validate some 
of the proposed predictions.  

Top-Leads 6xr8 6xlu 6xm5 6xey 6vyb 6xs6 6zgh 6zgg 6xm4 Total 
Chaulmosulfone  0.6         9 
Latanaprost   13.9         8 
Deditonium   28.9         8 
Tinosorb-s 0.003         5 
Estradiol mustard     0.2         4 
Fexofenadine   14.7         4 
Laniquidar   40.8         4 
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Supporting information 
 
Table S1. 3D similarities among SLSF trimer-conformers  

 
All the SLSF were obtained from 3D S spike trimeric protein models of SARS-CoV2 (SARS, Severe Acute 
Respiratory Syndrome) downloaded from the Research Collaboratory for Structural Bioinformatics (RCSB) 
Protein Data Bank.  Conformers contained the 986PP mutations except the native 6xr8 and 6xra which 
contained the 986KV wild-type sequence. Structural similarity  relative to 6xr8 was  expressed in RMSD Å 
(http://www.ccp4.ac.uk/MG). RMSD, Root Mean Square Differences. S state, prefusion, spike structures 
before viral/host membrane fusion. postfusion, spike structures after viral/host membrane fusion. Closed, 
RBDs down. Open,  1,2 or 3 RBDs up (receptor-accessible). Locked, a more dense closed conformation 13. 
S-R, the S1/S2 cleavage site  was replaced by arginine (R).  x1, stabilizer disulphide link between 383 and 
985. x2, stabilizer disulphide link between 413 and 987. Bold & yellow, conformers selected for further 
studies. Red PDB, closed conformation representatives. Blue PDB, open conformation representatives. Gray 
PDB, postfusion representative. 

 
 
Figure S1. Scheme of the SLSF monomer (A) and trimer (B) 3D models.   
 SeeSAR predicted a number of binding-pockets (colored shadows at the left). AutoDockVina works on 
submitted internal grids (rectangles at the right). A and B up, top views. A and B bottom, side views. Black 
arrows, location of the SLSF tips on  side views. 

 
Figure S2. Comparison 
of relative frequencies of 
lead binding-scores < 
1000 nM  from the 6xr8 
trimer and monomer. The 
screenings for binding of 
natural ligands to the 6xr8 
conformer was carried out 
by seeSAR. The 
distribution of lead 
frequencies were 
calculated and represented  
in Origin. 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
  
Figure S3. Binding of trimer and monomer 6xr8 leads to conformers. Each set of nM binding-scores were 
ordered from lower to higher and the first 1000 represented.The  6xr8 trimer (red A,B,E,F) and monomer 
(green C.D,G,H) leads were docked to trimers (3 central circles) and monomers (one central circle) by 
seeSAR (A,B,C,D) or by AutoDockVina (E,F,G,H).  Red-edged grey circles, trimer 6xr8 leads (bound to 3 
trimer or 1 monomer SLSFs). Green-edged grey circles, monomer 6xr8 leads (bound to 3 trimer or 1 
monomer SLSFs).  Red line, 6xr8 conformer. Orange line, 6xlu. Orange dashed-line, 6xm5. Orange dot-
line, 6xey. Dark green, 6vyb. Green lines, 6xs6 and 6zgh. Green dash-line, 6zgg. Green dot-line, 6xma. A) 
seeSAR trimer 6xr8 2948 leads docked to trimer-conformers. B) seeSAR trimer 6xr8 2948 leads docked to 
monomer-conformers. C) seeSAR monomer  6xr8 3045 leads docked to trimer-conformers. D) seeSAR 
monomer 6xr8 3045 leads docked to monomer-conformers. E) AutoDockVina trimer 6xr8 1864 leads docked 
to trimer-conformers. F) AutoDockVina trimer 6xr8 1864 leads docked to monomer-conformers. G) 
AutoDockVina  monomer 6xr8 1168 leads docked to trimer-conformers. H) AutoDockVina monomer 6xr8 
1168 leads docked to monomer-conformers. 
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 Characteristics S state Ref 

6xr8 0.00 RBD 3down prefusion closed 32 
6xra none helix+helix postfusion   
6vxx 0.37 RBD 3down prefusion 33 
6vyb 0.40 RBD 1up prefusion open  
6x2a 0.46 PP+ RDB 1up prefusion intermediate 11 
6x2b 0.51 PP+ RBD 2up prefusion intermediate  
6x2c 0.42 PP+ RBD 3down prefusion closed  
6x29 0.44 PP+C mutant prefusion closed  
6wpt 0.41 + NAb S309 prefusion open 2 
6wps 0.41 + NAb S309 prefusion closed  
6x6p 0.41 RBD 3down prefusion closed 34 
6xcn 0.53 + NAb C105 #2 prefusion open 3 
6xcm 0.55 + NAb C105 #1 prefusion open  
6xkl 0.51 PPPPPP prefusion 12 
6vsb 0.50 PP prefusion intermediate  
6xm3 0.52 RBD 1up  pH5.5 #1 prefusion closed 37 
6xm4 1.31 RBD 1up  pH5.5 #2 prefusion open  
6xlu 0.46 RBD 3down pH4 prefusion closed  
6xm0 0.51 consensus at pH5.5 prefusion closed  
6xm5 0.53 RBD 3down at pH5 prefusion closed  
6xs6 0.60 CoV2-D614G prefusion open 35 
7c2l 0.50 CoV2- D614G+Ab4A8 prefusion open  
7byr 0.53 + BD23 NAb prefusion 4 
6z43 0.51 + NAb prefusion open 5 
6z97 0.41 + MAb CR3022 prefusion open  
6zdh 0.42 +serum Ab prefusion closed 6 
6zox 0.44 S-R/x2       prefusion closed 13 
6zoy 0.41 S-R/PP/x1 prefusion closed  
6zoz 0.43 S-R/PP/x1 prefusion locked  
6zp0 0.43 S-R            prefusion closed  
6zp1 0.43 S-R/PP      prefusion closed  
6zp2 0.30 S-R/PP      prefusion locked  
6zge 0.48 uncleaved prefusion closed 38 
6zgi 0.53 S1-S2 cleaved  prefusion closed  
6zgh 0.78 S1-S2 cleaved  prefusion intermediate  
6zgg 0.86 S1-S2-cleaved  prefusion open  
6xey 2.90 +anti-RBD NMAb2-4 prefusion closed 7 
6zow 0.45 higher resolution hr prefusion 8 
6zp5 none hr. helix-helix postfusion closed  
6zp7 none hr. helix-helix postfusion open  
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Table S2. Drug-like characteristics of top-leads predicted by the SwissADME web server 

Top-leads      1A2 3A4  
Table 1 TPSA LIPK LogP Sol GIA inh inh PAINS  Brenk 
SN00236117 60.7 0 4.1 S High Yes Yes 0 1 
SN00333487 57.5 0 4.1 S High No Yes 0 3 
SN00030711 60.7 0 4.0 S High No No 0 1 
SN00241472 49.7 0 5.1 M High No No 0 0 
SN00339301 60.7 0 4.1 S High Yes Yes 0 1 
SN00316933 20.2 1 5.3 M High No No 0 1 
SN00350832 60.7 0 4.1 S High Yes Yes 0 1 
SN00360448 60.7 0 4.1 S High Yes No 0 1 
SN00379984 66.8 0 3.5 S High No No 0 1 
SN00037008 60.7 0 3.9 S High No No 0 1 
SN00359351 40.5 0 3.7 S High Yes No 0 1 
SN00395077 80.9 0 2.7 S High No No 0 1 
SN00020460 63.6 0 4.2 M High No Yes 0 2 
SN00024546 65.4 0 2.2 M High No No 0 1 
SN00030713 60.7 0 4.0 S High No No 0 1 
SN00031000 55.8 0 3.9 S High No Yes 0 1 
SN00071389 29.5 0 5.1 M High No Yes 0 0 
SN00071475 30.8 0 5.4 M High No No 0 1 
SN00072921 42.8 0 2.7 M High No No 0 0 
SN00072922 42.8 0 2.7 M High No No 0 0 
SN00073534 38.3 0 4.2 M High No No 0 0 
SN00236633 78.4 0 4.7 M High Yes Yes 0 1 
SN00272769 78.4 0 3.8 S High No No 0 1 
SN00306080 63.6 0 4.5 M High Yes Yes 0 0 
SN00316223 46.5 0 4.2 M High No Yes 0 2 
SN00317046 60.7 0 3.6 S High No No 0 1 
SN00327581 66.8 0 2.8 S High No No 0 1 
SN00330379 49.7 0 4.8 M High No Yes 0 1 
SN00334033 46.5 0 4.9 M High Yes Yes 0 1 
SN00334251 40.5 0 4.6 M High No No 0 1 
SN00363785 60.7 0 4.0 S High Yes Yes 0 1 

  
Top-leads      1A2 3A4   
Table 2 TPSA LIPK LogP Sol GIA  inh inh PAINS Brenk 
SN00249430 80.9 0 3.3 M High No No 0 1 
SN00241472 49.7 0 5.1 P High No No 0 0 
SN00400153 40.5 1 5.0 P High Yes Yes 0 1 
SN00278612 60.7 0 4.1 M High Yes No 0 1 
SN00359607 40.5 0 4.8 M High Yes Yes 0 1 
SN00300994 37.3 0 5.0 P High Yes Yes 0 0 
SN00282570 37.3 0 5.0 P High Yes Yes 0 2 
SN00254120 69.9 0 4.1 P High Yes No 0 0 
SN00335571 60.7 0 4.0 M High No No 0 1 
SN00316933 20.2 1 5.3 P High No No 0 1 
SN00307456 80.9 0 3.6 M High Yes No 0 1 
SN00030711 60.7 0 4.0 M High No No 0 1 
SN00272486 80.9 0 3.3 M High No Yes 0 1 
SN00333487 57.5 0 4.1 M High No Yes 0 3 
SN00312704 40.5 0 4.8 P High Yes Yes 0 1 
SN00362440 49.7 0 5.1 P High Yes No 0 0 
SN00356917 70.1 0 3.4 M High No No 0 2 
SN00334964 87.0 0 2.9 S High No No 0 1 
SN00073534 38.3 0 4.2 M High No No 0 0 
SN00046678 46.6 0 3.7 M High No Yes 0 0 
SN00400131 40.5 0 3.6 M High No No 0 1 

Top-leads      1A2 3A4  
Table 3 TPSA LIPK LogP Sol GIA  inh inh PAINS Brenk 
SN00171986 131.4 0 2.7 M Low Yes No 0 0 
SN00237200 124.3 0 3.0 M High Yes No 1 1 
SN00139699 96.5 0 3.4 M High No No 0 2 
SN00279624 116.5 0 1.1 S High No No 0 1 
SN00052785 119.7 0 2.7 M High Yes No 0 1 
SN00025089 90.9 0 1.4 M High No Yes 0 0 
SN00064143 108.7 0 2.6 S High No Yes 0 1 
SN00001854 147.4 0 1.3 S Low No No 1 2 
SN00147258 88.1 0 3.6 M High Yes Yes 0 1 
SN00023927 103.8 0 -0.3 S High No No 0 1 
SN00022518 108.2 0 2.1 M High No Yes 0 1 
SN00118894 120.7 0 2.4 M High Yes No 0 2 
SN00123877 91.4 0 3.3 M High Yes No 1 3 
SN00161487 139.8 1 0.6 S High No No 0 1 
SN00126519 143.8 0 2.4 M Low No No 1 2 
SN00002685 42.9 0 3.6 M High Yes No 0 0 
SN00120545 117.9 0 3.8 M Low Yes No 0 1 
SN00236177 144.5 0 1.6 S Low No No 1 2 
SN00261691 125.7 0 0.9 S High No No 0 0 
SN00234593 154.0 0 1.0 S Low No No 1 4 
SN00133277 108.7 0 3.5 M Low No Yes 1 2 
SN00262902 116.5 0 1.0 S High No No 0 1 
SN00121318 68.0 0 4.2 M High Yes No 0 0 
SN00031647 92.1 0 1.5 S High No Yes 0 0 
SN00131462 88.7 0 3.7 M High No No 0 2 
SN00263240 110.4 0 2.2 S High No No 0 0 
SN00005569 100.4 0 1.5 S High No Yes 0 0 
SN00031715 60.7 0 2.0 M High Yes Yes 0 0 
SN00031719 73.6 0 1.4 S High No Yes 0 0 
SN00132791 136.1 0 2.9 M Low No No 1 3 
SN00139629 83.0 0 3.4 M High No No 0 1 
SN00014964 89.9 0 1.7 S High No No 0 1 
SN00164272 114.3 0 0.9 S High No No 0 1 

 
The corresponding 2D structures to the SuperNatural II SN numbers can be consulted at Figure 2,4 and 5 or 
at http://bioinf-applied.charite.de/supernatural_new/index.php. Sol,  solubilities in water classified in general 
classes. LIPK, number of  violations of Lipinski rules that would make the ligand less likely to be an orally 
administrable drug if >5. It counts the number of Nitrogen (N) and oxygen (O) Hydrogen (H)-bond acceptors 
(best to have <10) and H-bond donors (best to have <5), the molecular weight (best if < 500) and the logP 
(best to be <5).  LogP, consensus value of multiple predictions of lipophilicity.  TPSA, estimates of the amount 
of topological polar molecular surface area, lowest values facilitate permeation of cell membranes (best to be 
<90 Å2 ).  1A2, 3A4, inhibition of the main detoxyfying cytochromes P450.  GIA, prediction of gastro-intestinal 
adsorption.  PAIN, Pan Assay Interference Structures (PAINS), alerting of the number of chemical fragments 
that return false positive signals in virtual binding. Brenk, alerting of the number of chemical moieties known 
to be toxic and/or unstable. Green, favorable. Yellowish, moderate. Reddish, unfavorable. 
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Figure S4. Binding of drug seeSAR trimer  6xr8 leads to conformers. Each set of nM binding-scores were 
ordered from lower to higher and the first 27 represented. Other details as in Figure S3. 
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